Poly(ADP-ribose) polymerase-1 (PARP1) and p53 labelling index correlates with tumour grade in meningiomas.

نویسندگان

  • Tamás Csonka
  • Balázs Murnyák
  • Rita Szepesi
  • Andrea Kurucz
  • Álmos Klekner
  • Tibor Hortobágyi
چکیده

Meningiomas are one of the most frequent intracranial tumours, with 13 histological types and three grades according to the 2007 WHO Classification of Tumours of the Central Nervous System. p53, as one of the most potent tumour suppressor proteins, plays a role in nearly 50% of human tumours. Poly(ADP-ribose) polymerase (PARP) is a DNA repair enzyme with high ATP demand. It plays a role in apoptosis by activating an apoptosis inducing factor, and in necrosis by consuming NAD+ and ATP. Only PARP1 has been investigated in detail in tumours out of the 17 members of the PARP superfamily; however, its role has not been studied in meningiomas yet. The aim of this study was to determine the role of p53 and PARP1 in meningiomas of different grade and to establish whether there is any correlation between the p53 and PARP1 expression. Both PARP1 and p53 have been expressed in all examined meningiomas. PARP1 labelled grade II tumours with a higher intensity as compared to grade I and III neoplasms, respectively. An increased p53 expression was noted in grade III meningiomas. There was no statistical correlation between p53 and PARP1 expression. Our data indicate that both PARP1 and p53 activation is a feature in meningiomas of higher grade, PARP1 overexpression being an early, whereas p53 overexpression, a late event in tumour progression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms ...

متن کامل

Clinical and Molecular Significance of Poly (ADP-Ribose) Polymerase-1 (PARP-1) in Breast Cancer of African Women and its Potential as a Targeted Therapy

Background: The therapeutic effects of Poly (ADP-ribose) polymerase-1 (PARP -1) inhibition are currently studied in a clinical trial that is recruiting AfricanAmerican (A-A) women with breast cancer (BC). Although, A-A and West African women are likely to share the same ancestry, there are overwhelming evidences, that BC is undoubtedly heterogeneous which might influence results obtained in the...

متن کامل

Poly (ADP-Ribose) Polymerase 1 Is Required for Protein Localization to Cajal Body

Recently, the nuclear protein known as Poly (ADP-ribose) Polymerase1 (PARP1) was shown to play a key role in regulating transcription of a number of genes and controlling the nuclear sub-organelle nucleolus. PARP1 enzyme is known to catalyze the transfer of ADP-ribose to a variety of nuclear proteins. At present, however, while we do know that the main acceptor for pADPr in vivo is PARP1 protei...

متن کامل

RBR-type E3 ubiquitin ligase RNF144A targets PARP1 for ubiquitin-dependent degradation and regulates PARP inhibitor sensitivity in breast cancer cells

Poly(ADP-ribose) polymerase 1 (PARP1), a critical DNA repair protein, is frequently upregulated in breast tumors with a key role in breast cancer progression. Consequently, PARP inhibitors have emerged as promising therapeutics for breast cancers with DNA repair deficiencies. However, relatively little is known about the regulatory mechanism of PARP1 expression and the determinants of PARP inhi...

متن کامل

Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc

Poly(ADP-ribose) polymerase 1 (Parp1) catalyzes poly(ADP-ribosylation) (PARylation) and induces replication networks involved in multiple nuclear events. Using mass spectrometry and Western blotting, Parp1 and PARylation activity were intensively detected in induced pluripotent stem cells (iPSCs) and embryonic stem cells, but they were lower in mouse embryonic fibroblasts (MEFs) and differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Folia neuropathologica

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2014